Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins.

نویسندگان

  • Hao Wang
  • Yongyou Zhu
  • Shozo Fujioka
  • Tadao Asami
  • Jiayang Li
  • Jianming Li
چکیده

Basic helix-loop-helix (bHLH) proteins are highly conserved transcription factors critical for cell proliferation and differentiation. Recent studies have implicated bHLH proteins in many plant signaling processes, including brassinosteroid (BR) signaling. Here, we report identification of two families of atypical bHLH proteins capable of modulating BR signaling. We found that activation-tagged bri1 suppressor 1-Dominant (atbs1-D), previously identified as a dominant suppressor of a weak BR receptor mutant bri1-301, was caused by overexpression of a 93-amino acid atypical bHLH protein lacking amino acids critical for DNA binding. Interestingly, atbs1-D only suppresses weak BR mutants, while overexpression of a truncated ATBS1 lacking the basic motif also rescues bri1-301, suggesting that ATBS1 likely stimulates BR signaling by sequestering negative BR signaling components. A yeast two-hybrid screen using ATBS1 as bait discovered four ATBS1-Interacting Factors (AIFs) that are members of another atypical bHLH protein subfamily. AIF1 exhibits an overlapping expression pattern with ATBS1 and its homologs and interacts with ATBS1 in vitro and in vivo. AIF1 overexpression nullifies the suppressive effect of atbs1-D on bri1-301 and results in dwarf transgenic plants resembling BR mutants. By contrast, silencing of AIF1 partially suppressed the bri1-301 phenotype. Our results suggested that plants use these atypical bHLH proteins to regulate BR signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis.

In plants, basic helix-loop-helix (bHLH) transcription factors play important roles in the control of cell elongation. Two bHLH proteins, PACLOBTRAZOL RESISTANCE1 (PRE1) and Arabidopsis ILI1 binding bHLH1 (IBH1), antagonistically regulate cell elongation in response to brassinosteroid and gibberellin signaling, but the detailed molecular mechanisms by which these factors regulate cell elongatio...

متن کامل

Antagonistic Regulation of Growth and Immunity by the Arabidopsis Basic Helix-Loop-Helix Transcription Factor HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH INCREASED LEAF INCLINATION1 BINDING bHLH11[W][OPEN]

Plants need to finely balance resources allocated to growth and immunity to achieve optimal fitness. A tradeoff between pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and brassinosteroid (BR)-mediated growth was recently reported, but more information about the underlying mechanisms is needed. Here, we identify the basic helix-loophelix (bHLH) transcription factor HOMOLOG...

متن کامل

A Triantagonistic Basic Helix-Loop-Helix System Regulates Cell Elongation in ArabidopsisW OA

In plants, basic helix-loop-helix (bHLH) transcription factors play important roles in the control of cell elongation. Two bHLH proteins, PACLOBTRAZOL RESISTANCE1 (PRE1) and Arabidopsis ILI1 binding bHLH1 (IBH1), antagonistically regulate cell elongation in response to brassinosteroid and gibberellin signaling, but the detailed molecular mechanisms by which these factors regulate cell elongatio...

متن کامل

Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an Atypical bHLH Transcription Factor, in Auxin Responses in Arabidopsis

Auxin regulates nearly all aspects of plant growth and development including cell division, cell elongation and cell differentiation, which are achieved largely by rapid regulation of auxin response genes. However, the functions of a large number of auxin response genes remain uncharacterized. Paclobutrazol Resistance (PRE) proteins are non-DNA binding basic helix-loop-helix transcription facto...

متن کامل

Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis.

In rice (Oryza sativa), brassinosteroids (BRs) induce cell elongation at the adaxial side of the lamina joint to promote leaf bending. We identified a rice mutant (ili1-D) showing an increased lamina inclination phenotype similar to that caused by BR treatment. The ili1-D mutant overexpresses an HLH protein homologous to Arabidopsis thaliana Paclobutrazol Resistance1 (PRE1) and the human Inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2009